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The field of archaeological science has grown to encom-
pass a wide range of analytical techniques over the past
20 years. The application of methods initially developed
and grounded in physics, chemistry, biology, and geology
have been brought together to fill in the parts of the
human story missing from the traditional archaeological
record and added nuance to our understanding of the
lived experience of people in the past.

Michael Tite was the first person to hold a chair in
archaeological science in the United Kingdom, a role to
which he was appointed at Oxford University in 1989.
Writing in 1991, he did not consider archaeological science
as a discipline all on its own but rather a meeting ground
for collaboration; he emphasized the importance of inte-
gration of theory and method in both traditional archaeol-
ogy and various contributing sciences (1). Throughout
the 1990s, but particularly the early 2000s, the number of
publications in the area of archaeological science skyrock-
eted (2). Institutional support increased in the United
Kingdom but lagged in North America, as did training for
graduate students and innovations in archaeological
science techniques (3). This trend has largely continued.
By 2015, David Killick wrote of the “awkward adolescence”
of archaeological science, citing a rapid pace of growth
but noting challenges in funding, quality control, and
access (4). Most recently, Kate Britton and Michael
Richards commented on the acceptance of archaeological
science in mainstream archaeology but cautioned that
practitioners need to understand the theory behind the
techniques they use to ensure proper application, as well
as integrate methodology and complex archaeological
research questions (5).

In this special feature of PNAS, we recognize several key
landmarks in the growth of archaeological science as it
continues to move forward as a discipline. We review sev-
eral developments in the areas of radiometric dating, sta-
ble isotope and elemental analysis, and proteomics. We
offer insight into the future applications of these methods
as analytical techniques continue to be refined and
improved. But we agree with our colleagues that multiple
challenges remain to be addressed.

In order to fully support the scientific community going for-
ward, data management—and particularly data-sharing stand-
ards, quality assurance, and reproducibility—are essential.
Beyond a matter of protocol, there is an ethical responsibility
that data produced from destructive sampling of irreplace-
able, archaeological material are disseminated in an accessible
format. Ethics of sampling and stakeholder involvement are
also essential, and not supplemental, to the continuing growth
of this field. The development of anthropology and archaeol-
ogy throughout the 19th and 20th centuries took place in a
colonialist context, through the lens of Western scientific

perspectives (e.g., refs. 6 and 7). Although broader archaeolog-
ical practice has more recently engaged with decolonization
and antiracist efforts, challenges remain (8–12). Likewise,
colonialism and global economics have recently been shown
to produce biases in the study of deep-time biodiversity;
paleontology has favored rich countries over poor ones, and
continued to practice “parachute science,” sampling poorer
countries without including or publishing with local collabora-
tors (13). Archaeological science must be wary of falling into
the same patterns of exploitation, especially as the kinds
of increasingly sophisticated analytical techniques highlighted
in this volume require substantial economic investment,
decreasing the likelihood that much of this infrastructure will
be broadly available outside of the wealthiest nations and
institutions.

Advancement of Techniques

Dating. Since the first application of radiocarbon dating to
archaeological samples in the mid-20th century (14, 15)
and subsequent technological developments in specialist
subfields throughout the latter half of the 20th century,
the drive to improve and refine dating methods and chro-
nologies has resulted in a rapid pace of advancement. By
the 1980s, the advent of accelerator mass spectrometry
(MS) for radiocarbon dating improved accuracy and made
it possible to analyze much smaller samples of organic
material (16, 17). As methods of purification improved,
ultrafiltration became standard for processing bone colla-
gen, and it is now possible to perform compound-specific
dating of individual molecules, such as single amino or
fatty acids (18, 19). Casanova et al. (20) demonstrate the
power of these more refined radiometric approaches by
dating fatty acids extracted from residues on ceramics.
Not only do these techniques provide a means with which
to date the use of the ceramic vessels, but because dairy
fats in particular can be targeted, they allow the spread of
the use of ruminant milk to be accurately dated. Casanova
et al. use this technique to determine that dairying by the
Linearbandkeramik cultural group in central Europe was
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associated with the earliest settlers in the region, rather
than a more gradual diffusion of these practices.

Successive iterations and refinement of the radiocarbon
calibration curve have made dating more accurate (21, 22).
Through Bayesian statistical modeling, site and regional chro-
nologies are constantly being refined (23), and syntheses of
radiocarbon dates have resulted in multiple national and
international databases (24). While there is scope for the
continued improvement of precision and calibration in radio-
carbon dating, allowing for the analysis of ever smaller sam-
ple sizes and date ranges, the technique cannot be applied
for the whole of human history. For samples older than
50,000 y of age, alternative dating methods have been devel-
oped with varying levels of success. Among these are
trapped charge and amino acid racemization (AAR), which
are reviewed in this issue by Penkman et al. (25). These
methods have the potential to expand the reach of scientific
dating well beyond the limits of radiocarbon. In the case of
AAR, the intracrystalline portion of the protein must be pre-
sent and cannot have undergone diagenesis, making it possi-
ble to date mollusc shell, tooth enamel, eggshell, and bone
(26, 27). This technique has been in development almost as
long as radiocarbon (28–30), but it has been less systemati-
cally applied by archaeologists to date. As Penkman et al.
(25) highlight, advances in calibration and cross-checks
should advance the use of this valuable alternative dating
method in the future.

Stable Isotopes. The applications of isotope ratio MS to
archaeological remains have grown as methods have
become streamlined and more automated, concomitant
with decreased costs. Some of the early analyses in
archaeology sought to address questions of paleodiet by
targeting the stable isotopes of carbon (δ13C) and nitrogen
(δ15N) in modern animal tissues and bone collagen
(31–33). This was accompanied by the development of oxy-
gen isotope (δ18O) analysis in marine molluscs to under-
stand seasonality (34–36). In subsequent years, isotopic
analysis has broadened to include its application to a wide
range of questions, from engaging with paleoclimate and
paleoenvironmental reconstruction, mobility, point of ori-
gin, and life history reconstruction (e.g., refs. 37 and 38).
The exploration of novel isotope systems offers the possi-
bility of broadening the range of insights that can be
obtained from geologically old materials, specifically those
dating beyond the range of collagen preservation. This is
exemplified in the contribution from Jaouen et al. (39),
which uses analysis of zinc isotopes in Neanderthals
and associated fauna from a Middle Paleolithic site over
50,000 y old in Iberia to detect evidence for a high degree
of carnivory. While the use of nitrogen isotopes has
previously been used to suggest high levels of meat con-
sumption in Neanderthals, the authors combine zinc and
strontium, carbon, oxygen isotopes, and trace element
analysis from tooth enamel to parse out potential meta-
bolic versus dietary effects to support this hypothesis. In
so doing, they provide a precedent for the application of
zinc isotope analysis in cases where nitrogen analysis can-
not be performed due to poor collagen preservation.

Trace Element Analysis. Alongside isotopic analysis, the quan-
tification of trace elements has also become increasingly

common in archaeology, and the use of X-ray fluorescence
(XRF) and inductively coupled plasma optical emission
spectrometry have grown considerably in the field (40, 41),
as have studies employing scanning electron microscopy
and Fourier-transform infrared spectroscopy in elemental
analysis. These techniques are often combined to maximize
applications, ranging from studying surface modifications of
archaeological ceramics to identifying waterlogged wood
anatomy, to identifying the earliest uses of lacquer (42–44).
The development of relatively inexpensive portable XRF
(pXRF) units has facilitated archaeologists’ capacity to nonde-
structively generate elemental data from artifacts and raw
materials in a unique way. Frahm and Carolus (45) analyzed a
large number of obsidian artifacts from Neolithic sites in the
Near East using pXRF to determine the geological origin of
the raw materials. Their findings shed important light on how
connections among communities intensified in the region
over time, as evidenced by increasing diversity in obsidian
sources. Using other archaeological data, the authors link
these patterns to increasing population density. This kind of
study is facilitated by the nondestructive nature and high
throughput capacity of the pXRF technique.

Proteins and Proteomics. The characterization of proteins
from ancient samples has seen tremendous development
in recent decades. Initial forays into this area used immu-
noassay techniques, often on tool surfaces, in hopes of
identifying the animal taxa that were processed; these
studies were fraught with a host of problems, notably false
positives and a lack of reliability (46). The development of
high-sensitivity MS techniques, including matrix-assisted
laser desorption/ionization coupled to time of flight MS
(MALDI-TOF) and liquid chromatography with tandem MS,
has catalyzed rapid growth in the field of paleoproteomics,
especially since the turn of the millennium (47, 48). These
techniques have been utilized to address a broad range of
questions related to species identification, phylogeny,
ancient human diet, protein degradation, and ancient dis-
eases (49–51).

Richter et al. (52) review the application of peptide mass
fingerprinting, also known as “zooarchaeology by mass
spectrometry” or “ZooMS,” to the identification of archaeo-
logical bones and discuss the potential for its expansion to
noncollagenous proteins and application to nonmamma-
lian fauna. They note that one crucial limiting factor in the
widespread use of ZooMS is not its technical advancement,
but rather the accessibility of established collagen spectra
for comparison across laboratories. The development of
open access databases containing reference spectra will
be essential in the continued development of ZooMS.

The study of ancient proteins extends beyond the
sequencing of collagen peptides from bones and teeth.
Demarchi et al. (53) apply a paleoproteomic approach to
identify the avian taxon responsible for Late Pleistocene
eggs that were exploited by Indigenous people in Australia
around 50,000 y ago, resolving a decades-long contro-
versy. These specimens yielded no endogenous DNA, but
protein sequences were able to identify that the eggshell
fragments belonged to the extinct, giant flightless bird Gen-
yornis newtoni through the exclusion of other possible bird
taxa. The taxonomic identity of these eggshell samples is
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consequential because they bear evidence of cooking
and therefore demonstrate direct interactions between
humans and Genyornis. There is currently no skeletal evi-
dence for the exploitation of Genyornis at archaeological
sites in Australia; therefore, these cooked eggshells dem-
onstrate that Genyornis was not extinct before humans
arrived on the continent and that humans made use of
this resource.

Data Sharing and Accessibility

Alongside technical advancements in analytical techniques,
quality control, data accessibility, and data reproducibility
are central to the practice of archaeological science. Stand-
ards for data citation and data sharing (54, 55) and termi-
nology and reporting (55) have been proposed but are
not uniformly applied. Studies explicitly focusing on the
development and application of various quality-control
approaches have been limited (but see refs. 56 and 57 for
examples in stable isotope analysis). The existence of data-
bases beyond the project level, including within subfields
and in varying formats, testifies the importance and utility
of data aggregation, but there is uncertainty about long-
term sustainability of many databases. In addition, data
reporting standards and vocabularies vary across disciplin-
ary boundaries, creating an additional challenge in data
synthesis and integration (58). Several of the grand chal-
lenges listed in Kintigh et al.’s (59) landmark PNAS paper in
2014 on the “grand challenges for archaeology” included

the synthesis of legacy data in addition to new data gener-
ation; this arguably remains a grand challenge for archae-
ology in and of itself.

Practicing FAIR principles (Findability, Accessibility, Inter-
operability, and Reuse) (60) has the potential to transform
the current rugged archaeological science data landscape.
In this issue, Kansa and Kansa (61) offer solutions at the
level of data creation with the use of unique, persistent
identifiers, which allow the reuse of data beyond the origi-
nal analysis and support quality control (61). Moving for-
ward, it will be critical to incorporate these practices as
standard throughout the archaeological science research
process.

Conclusion

As the field of archaeological science matures, several key
issues remain. The need for care and maintenance of the
physical collections that are sampled cannot be overstated
(62). Likewise, there is a need for improvement in bridging
archaeological science and local stakeholders, including
indigenous knowledge and participation, from theoretical
inception alongside methodological development (63–65).
The advancement and application of new techniques may
be paramount, but must not surpass concomitant efforts
in data management, stewardship of physical collections,
and increase in equity of practice: namely, an ethics of
practice that is adhered to by all engaged in the discipline.
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