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ABSTRACT ARTICLE HISTORY

Stable carbon (6'3C) and nitrogen (6'°N) isotopic compositions of ~ Received 16 December 2021
bone and dentine collagen extracted from museum specimens Accepted 27 September
have been widely used to study the paleoecology of past 2022

populations. Due to possible systematic differences in stable
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isotope values between bone and dentine, dentine values need Beluga whale; bone-

to be transformed into bone-collagen equivalent using a collagen; carbon-13; isotope
correction factor to allow comparisons between the two collagen ecology; marine mammals;
sources. Here, we provide correction factors to transform dentine narwhal; nitrogen-15;

6"3C and 6N values into bone-collagen equivalent for two paleoecology; tooth-dentine
toothed whales: narwhal and beluga. We sampled bone and

dentine from the skulls of 11 narwhals and 26 belugas. In

narwhals, dentine was sampled from tusk and embedded tooth;

in belugas, dentine was sampled from tooth. 6'3C and 6'°N were

measured, and intra-individual bone and dentine isotopic

compositions were used to calculate correction factors for each

species. We detected differences in 6'3C and 6'°N. In both

narwhals and belugas, we found lower average 6'3C and 6'°N in

bone compared with dentine. The correction factors provided by

the study enable the combined analysis of stable isotope data

from bone and dentine in these species.

1. Introduction

Stable carbon (6'3C) and nitrogen (6"°N) isotopic compositions of bone and dentine col-
lagen extracted from subfossil specimens have been used to study the paleoecology of
past populations and extinct species of mammals. Most of these studies have focused
on terrestrial taxa, including northern hemisphere species such as brown bear (Ursus
arctos), hyena (Crocuta crocuta), musk ox (Ovibos moschatus), saiga (Saiga tatarica), and
woolly rhinoceros (Coelodonta antiquitatis) [1-5], and South American species including
camelids, equids, and gomphotheres (extinct elephant-like proboscideans) [6,7].

To a lesser extent, stable isotope studies have been applied to fossil bone and dentine
material of marine mammal species, including pinnipeds and cetaceans [e.g. 8-15]. Stable
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isotope analysis of osseous materials has also been applied to contemporary marine
mammal populations to elucidate foraging ecology and dietary niche of e.g. narwhals
(Monodon monoceros) and belugas (Delphinapterus leucas) [16,171.

As a palaeoecological marker, carbon isotopes provide information on the primary pro-
ducers at the base of the food web within an ecosystem. Carbon reflects their photosyn-
thetic pathways and the environmental parameters affecting them. In terrestrial
environments, the primary producers contributing to 8'3C variation are plants [18],
while in marine environments, '3C primarily reflects phytoplankton and algae compo-
sition [12]. For marine mammals and other large predators, gradients in 6'3C also exist
such that those with primarily benthic diets tend to have higher tissue 6'>C values
than those with primarily pelagic diets [19]. In both terrestrial and marine ecosystems,
8"°N reflects the trophic level of an individual or species [20]; however, the 6'°N at the
base of the food web also influences the 6'°N of higher trophic level consumers such
that a single species, feeding at the same trophic level in two different ocean basins,
may have very different tissue 6'°N values [21].

Combined 6'3C and 6"°N from bone collagen provide information on the average diet of
an individual over multiple years [20,22]. In contrast with bone, which is continually remo-
delled, dentine grows incrementally, and therefore the isotopic composition of dentine cor-
responds to different years of an individual's life, depending on the specific tooth/tusk
development of the target species [23]. Thus, despite bone and dentine collagen being the
same substrate, they incorporate species’ life histories differently. In narwhals, for example,
where males have one (and rarely two) long erupted tusks, stable isotope values from the
various dentine layers of the tusk represent an individual's diet in different years [24]. In
mammal species, where young nurse on their mother’s milk until they are weaned, collagen
extracted from dentine of the first set of teeth in calves/juveniles, or from the roots of the
permanent teeth, usually have higher §'°N values, reflecting the suckling period [2,25,26].

If differences in stable isotope values between bone and dentine are systematic,
dentine isotope values could be translated into the bone-collagen equivalent using a cor-
rection factor. This would enable the direct comparison between §'3C and 6'°N derived
from these distinct skeletal elements. The correction factor is an estimate of the average
difference between bone and dentine §'3C and 6'°N from the same individual, and across
conspecific samples. This approach has been used to estimate the average difference in
6"°N retrieved from bone and tooth in terrestrial mammals. Two examples of species
where correction factors were estimated are wolves and hyenas. For wolves, a correction
factor of 1.92 + 0.19 %0 was estimated and, for hyenas, of 1.08 + 0.55 %o [2]. However, it is
important to keep in mind the difference in growth pattern between marine and terres-
trial mammals. Marine mammals’ tooth growth pattern is characterized by the layered
deposition of dentine, which happens yearly in most marine mammal species [27].

Museum collections housing faunal remains are a crucial resource for studying changes
in populations and species across time and space. However, when analysing specimens of
the same species from collections or from the field, it is not always possible to access the
same skeletal element. Targeting only a specific skeletal element (e.g. cranial bone or
tooth) for analysis may drastically reduce the number of available specimens, affecting
the robustness and reliability of results. Here, we present a systematic approach to cir-
cumvent this issue in two toothed whale species, narwhal and beluga (the only two
species within the Monodontidae family).
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To calculate correction factors for 6'>C and 6'°N in narwhal and beluga, we obtained
collagen 6'3C and 6'°N from bone and dentine collected from voucher specimens housed
at the Natural History Museum of Denmark, University of Copenhagen, and from the
Greenland Institute of Natural Resources. The various samples were used to estimate iso-
topic differences between bone and dentine collagen within individuals, and average
differences among individuals within each species. Average differences were used to cal-
culate correction factors, which can be applied to transform dentine collagen isotope
values into bone-collagen equivalent.

2. Materials and methods
2.1. Samples

The sampled material comprised skulls from 11 narwhals and 26 belugas. We sampled
skulls for both bone and dentine at the Natural History Museum of Denmark, University
of Copenhagen, and from the Greenland Institute of Natural Resources (see detailed
sample information in Supplementary Table 1). Five narwhal skulls were from West Green-
land (WG) and six from East Greenland (EG). All belugas were sampled in WG, as the
species is not present in EG. The skulls were collected in the field between 1990 and 2018.

Narwhals have a unique dentition. Individuals lack teeth in the lower jaw, and in the
upper jaw males have one long erupted tusk and one embedded tooth, while females
have two embedded teeth [28]. In rare cases, there are exceptions, such as males with
two erupted tusks or females with one tusk and an embedded tooth. Therefore, for nar-
whals, we determined the isotopic compositions of three skeletal elements: tusk,
embedded tooth, and bone. For belugas, which have a row of homodont teeth in both
the upper and lower jaw, we sampled tooth and bone.

All individuals sampled for this study were adults, to avoid issues of high 8'°N values in
the bone and dentine of nursing calves/juveniles. Sex information for the samples was
based on the presence/absence of a tusk in narwhals, and/or the inspection of sexual
organs in both narwhals and belugas.

2.2. Stable isotope 6'>C and 8'°N analysis

We drilled 200-300 mg of each skeletal element. For narwhals, we drilled (i) bone, (ii) tusk,
and (iii) embedded tooth. For the tusk, we cut a chunk from the base of the tusk. The
embedded tooth of narwhal was sampled from well preserved skulls; thus, the embedded
teeth were inside the skulls. To sample them, we cut the skulls with a radial drill, creating a
hole to access the embedded tooth. Using that hole, we sampled a chunk from the
embedded tooth. For one of the narwhal samples (ID: 956), we did not have access to
the tusk, and therefore only sampled bone and embedded tooth. For belugas, we
drilled tooth dentine from each skull. Bone 6'>C and 6'°N data from the same specimens
have been published previously in Skovrind et al. [16] and Louis et al. [17]. In our study,
the beluga bone data was used to estimate differences between skeletal elements. See
detailed sample information in Supplementary Table 1.

Stable carbon and nitrogen isotopic compositions were determined using a continu-
ous flow isotope ratio mass spectrometer at the Water Quality Centre, Trent University,
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Canada. Bone and dentine samples were cut into small fragments using an Ultimate XL-D
micromotor with a diamond-tipped cutting wheel (NSK-Nakanishi International, Kanuma,
Tochigi, Japan) and placed in glass culture tubes. Based on sample availability, some
samples were finely powdered while others were left as small chunks as described
above. The same pre-treatment protocols described below were applied for both bone
and dentine samples.

Each sample was immersed in 2:1 chloroform:methanol solution and sonicated for 1 h
to remove lipid contaminants. Following sonication, the sample material was pelleted via
centrifugation and the organic solution containing lipids was removed. Another aliquot of
the chloroform:methanol solution was then added to each tube for a further hour of soni-
cation. After the second hour of ultrasonication, the solution was removed while leaving
the sample pellet intact, and the samples were left to dry for 24 h at room temperature.

Following lipid extraction, the samples were demineralized in strong acid to remove
the bioapatite component. To each culture tube, 9 mL of 0.5 M hydrochloric acid (HCI)
were added, and samples were placed on an agitating table to increase the surface
area of the sample exposed to the acid. The powdered samples had an increased rate
of demineralization and were therefore removed from HCI solution after ~6 h. The coar-
sely ground samples required longer demineralization periods up to 36 h. Samples were
removed from HCl when they appeared translucent or had a malleable texture. Each
sample was then rinsed in Type | water (resistivity > 18.2 MQ cm) at least 4 times, or
until the pH of the solution was 6 as indicated using pH test strips. The samples were
then solubilized using 3.5 mL of 0.01 M HCI at 75 °C for 36 h.

Following solubilization, the samples were transferred into glass vials and lyophi-
lized. From a subset of the samples, 0.5 mg of the lyophilized material was weighed
into tin capsules for isotope analysis. The remainder of the samples were then
treated using a second lipid extraction protocol to ensure complete removal of lipid
contaminants.

The second lipid extraction began with lyophilized material being resuspended in 1.6
mL of Type | water. Next, 6 mL of 2:1 chloroform:methanol was added to the soluble col-
lagen, and the samples were then sonicated for 1 h. Following sonication, the samples
were centrifuged to generate a three-phase extraction consisting of water-methanol-col-
lagen solution in the top layer of the extraction, with lipid and chloroform:methanol layers
below. The protein-containing top layer of the solution was transferred into a clean tube,
and the lipid—chloroform-methanol components of the extraction were left in the tube.
An additional aliquot of methanol was then added to the lipid containing portion of the
extraction and the same protocol of sonication and centrifugation was followed to try and
isolate any protein remaining in the ‘waste’ portion of the extraction. The top layer was
again transferred into a clean tube and then left for 24 h at 62 °C to evaporate off the
methanol component to isolate the desired water-soluble protein component of the
extraction. Finally, an additional 6 mL of 2:1 chloroform:methanol was added to the
protein—-water portion of the extraction to attempt to remove any remaining lipids.
Samples were left to sit for 1 h and then centrifuged. The top layer of the three-phase
extraction was removed for the final time and left to evaporate in a new tube for 24 h,
then transferred to a glass vial and lyophilized.

Approximately 0.5 mg of lyophilized collagen was weighed into tin capsules and ana-
lyzed via a continuous flow isotope ratio mass spectrometer paired with an elemental
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analyzer. The samples were analyzed using a Euro Vector EA 3000 paired with a Nu Horizon
CF-IRMS at the Water Quality Centre, Trent University, Canada. Calibration of sample stable
isotopic composition was performed relative to the Vienna Pee Dee Belemnite (VPDB) and
atmospheric nitrogen (AIR) scales for §'>C and &"°N respectively. The calibration was per-
formed using USGS40 and USGS66 or USGS63. In house collagen standards SRM-1
(caribou bone collagen), SRM-2 (walrus bone collagen), and SRM-14 (polar bear bone col-
lagen) were used to monitor accuracy of the stable isotope measurements. Additionally,
duplicate samples were interspersed throughout the analyses to measure the homogeneity
of the experimental samples relative to known homogenous standards.

Differences in 6'3C in samples collected at different time points may reflect changes in
6"3C of atmospheric CO,, reflecting the industrial revolution and the use of fossil fuels
[29]. Therefore, to avoid erroneous interpretations, 8'3C from samples collected across
time require correction. We corrected for this change, termed the Suess effect, following
the formula from [30].

To contextualize the data generated in our study, we combined our findings with pub-
lished 6'3C and 6'°N bone records (also from skulls) from 40 WG narwhals, 39 EG nar-
whals, and one additional beluga [17].

2.3. Skeletal element comparisons

To estimate correction factors, we calculated pairwise average isotopic differences
between skeletal elements for each sampled individual (data for narwhal: Supplementary
Table 2; data for beluga: Supplementary Table 3). For narwhal, these estimates were also
calculated for each population, WG and EG; results are summarized in Table 1. Correction
factors were estimated as the average of the pairwise average differences for each species,
and for each population in narwhal.

3. Results
3.1. Isotopic skeletal differences in narwhals

In narwhals, 6'3C values from bone collagen were lower than in dentine; this pattern was
consistent in both WG and EG narwhals. For §'3C, average values and standard deviations
(which will always be reported together with the average values throughout the manu-
script) were: bone =-15.43 +0.82 %o, tusk =-15.08 + 0.87 %o, and embedded tooth =-
14.99 + 0.75 %o. In WG narwhals, differences in 6'C between tusk and bone (0.81 +
0.13 %o0) were larger than differences between embedded tooth and bone (0.37 + 0.45

Table 1. Average differences and standard deviations in '>C and 6'°N isotopic composition between
different skeletal elements in narwhal and beluga. These average differences were used as correction
factors to translate dentine values to bone-collagen equivalents.

A8"3C ASVN
Species Population Skeletal element Average * s.d. %o Average * s.d. %o
Narwhal West Greenland Tusk/Bone 0.81+0.13 0.49 + 0.60
Narwhal West Greenland Embedded/Bone 0.37 +£0.45 1.65 +0.69
Narwhal East Greenland Tusk/Bone 0.31+0.25 0.48 + 0.60
Narwhal East Greenland Embedded/Bone 0.51+0.35 1.45+0.49
Beluga West Greenland Tooth/Bone 0.37+0.26 0.59 +0.60
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%o). In EG narwhals, we observed the opposite, and differences between tusk and bone
(0.31+0.25%o0) were smaller than differences between embedded tooth and bone
(0.51 +0.35 %o) (Table 1, Figure 1).

In both narwhal populations, 6'°N values from bone collagen were lower than in
dentine. For 6'°N, average values were: bone = 16.14 + 0.86 %o, tusk = 16.54 + 0.98 %o,
and embedded tooth = 17.68 + 1.17 %o0. Both WG and EG narwhals showed smaller differ-
ences between tusk and bone (0.49+0.60 %0 and 0.48 + 0.37 %o, respectively), than
between embedded tooth and bone (1.65+0.69 %0 and 1.45+0.57 %o, respectively)
(Table 1, Figure 1).

3.2. Isotopic skeletal differences in belugas

In belugas, §'>C values from bone collagen were lower than in dentine. For 6'3C, average
values were: bone =-14.02+0.25 %o and tooth =-13.65 +0.23 %o. The average §'3C
difference between tooth and bone was 0.37 £0.2 %o (Table 1, Figure 1). For 8N,
average values were: bone=17.33+0.61%o0 and tooth =17.92 + 0.63 %o. The average
&"°N difference between tooth and bone was 0.59 +0.69 %o (Table 1, Figure 1).

3.3. Correction factors in narwhals and belugas

Average differences among skeletal elements for each species and population (for
narwhal) were used as a correction factor to translate dentine collagen isotope values
to bone-collagen equivalent (Table 1). Differences in 6"3C and 8"°N before and after cor-
recting the data are visualized in Figure 1. Absolute comparisons can be found in Sup-
plementary Figure 1 and full data can be found in Supplementary Table 4.

We also summarized average 6'3C and 6'°N before and after correcting the data
derived from each dentine element (tusk, embedded tooth, tooth); we report these
average values for each species, and for the two geographic populations for narwhals
in Table 2. Overall, we detected a reduction in the difference between skeletal element
average values after application of the correction factor (Table 2, Figure 1). Dentine cor-
rected values fall within the bone average of a combined panel of newly generated and
published data for these species (Supplementary Figure 1).

4. Discussion

We measured 6'3C and 6'°N from bone and dentine collagen derived from narwhal (n =
11) and beluga (n = 26). The bone and dentine were sampled from whale skulls housed in
museum collections. We performed a systematic comparison of isotopic composition of
various skeletal elements from the same individuals, and across individuals within each
species and/or population (for narwhal). These values were successfully used as a correc-
tion factor, allowing the direct comparison of data from different skeletal elements, and
from different populations.

For both narwhal and beluga, we detected lower values of '>C and '°N in bone col-
lagen than in dentine collagen. For narwhal, the highest 6'°N values were found in
embedded tooth. Due to the smaller size of the embedded tooth compared to
the tusk, its isotopic composition could still present higher 6'°N due to the suckling
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(A) Raw 8'°C and 6N

(B) Corrected 5'°C and &'°N by
element

(C) Corrected 5'°C and &"°N by
element and population
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Figure 1. Boxplots showing the average differences in 6'3C and 6'>N composition between various
skeletal elements analyzed from narwhal (tusk:bone, embedded tooth:bone) and beluga (tooth:bone).
Red dot in each boxplot represents the mean. (A) 6"3C and §'°N raw composition, with '3C corrected
for the Suess effect; (B) 6'C and 6"°N corrected using the correction factor estimated for each species/
skeletal element (data for narwhal: Supplementary Table 2; data for beluga: Supplementary Table 3);
and (C) 6"C and 6'°N corrected using the correction factors estimated for each narwhal population,
considering known population differences [14]. All data can be found in Supplementary Table
4. Colours represent species and populations. Green palette: West Greenland (WG) narwhal, blue:

East Greenland (EG) narwhal, and purple: beluga.
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Table 2. Average 6"°C and 6'°N values before and after correcting the data for systematic differences
in skeletal element composition. WG: West Greenland; EG: East Greenland.

Average 6'3C Average 6"°N
Skeletal Before correcting  After correcting  Before correcting  After correcting
Species  Population element data (%o) data (%o) data (%o) data (%o)
Narwhal WG Tusk -14.12£0.42 -14.93 £0.42 17.44£0.98 16.95 £0.98
Embedded -1435+£0.33 -14.72£0.33 18.59+0.94 16.94 + 0.94
tooth
Narwhal EG Tusk -15.72£0.18 -16.03£0.18 15.95+0.34 15.47 £0.34
Embedded -15.52 +£0.56 -16.03 + 0.56 16.92 + 0.69 15.47 + 0.69
tooth
Beluga WG Tooth -13.65+0.23 -14.02+£0.23 17.92+0.63 17.33+£0.63

effect [23,25]. Marine mammal milk is rich in lipids [31] and because lipids have lower 8'3¢
values relative to proteins [32], we might expect lower §'3C values in teeth relative to
bone collagen [33], but we did not observe this pattern, consistent with the results of
several other studies [34-36]. The carbon in collagen is derived primarily from dietary
protein [37,38] and the relative importance of lipids in the diet may not be clear when
comparing the collagen from bones and teeth. For belugas, Matthews and Ferguson
[36] found consistent declines in the 6'°N values across the first growth layer groups of
teeth, consistent with increased 6'°N values during a prolonged period of suckling.
They did not find consistent patterns with respect to 6'3C, with about half of the 27
whales they examined showing no variation across the period of nursing inferred from
the 6'°N values.

Differences in the isotopic composition across tusk layers have been reported [24];
however, our sampling strategy did not target a specific layer, but rather sampled a
chunk of tusk comprising several layers, and hence reflected average 6'°C and 6'°N
across several years. Because of this sampling strategy, the correction factors generated
in this study are applicable to samples collected in a similar manner, but not necessarily
for samples targeting specific time periods during the life of an individual whale.

Using 6'3C and 6'°N from bone collagen as dietary indicators, population differences
in the foraging ecology of narwhals in WG and in EG have been reported [17]. Our narwhal
bone and dentine data also showed systematic differences in §'>C and 6'°N based on
populations. Thus, for narwhal, we estimated a species-wide correction factor, as well
as a correction factor specifically for each population, to minimize possible differences
in the life history of these two populations that could influence our results (Table 1,
Figure 1). When we applied the species-wide correction factor, the average differences
between tusk and bone, or embedded tooth and bone, were reduced to values approach-
ing zero (Figure 1B, Figure 1C). Thus, we show that in the absence of a priori information
on population differences due to life history in isotopic values within a species, it is feas-
ible to apply a species-wide correction factor to combine bone and dentine data.
However, if possible, one should consider life history differences among populations of
a species when estimating correction factors, as it might bias results.

Our bone/dentine correction factor was estimated based on cranial bone and dentine
derived from three dentine elements; tusk and embedded tooth in narwhals, and tooth in
belugas. As only one bone element was included (skull), our correction factor may not be
fully representative of the intraskeletal bone isotope variation in either species. §'>C and
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&"°N values in bone tissue are dependent on bone remodeling and biochemical turnover
rates [22]. In humans, higher bone turnover rates are significantly and negatively corre-
lated with lower 6'°N [39]. Smith et al. [40] compiled published and new data on intras-
keletal bone variation in §'>C and 6'°N across marine mammals. The data showed
variation in intraskeletal bone 6'3C ranging from 0.1 %o in walrus (Odobenus rosmarus)
(between cranium and mandible [41]) to 1.4%o in dusky dolphin (Lagenorhynchus
obscurus) (among atlas, humerus, and basioccipital [42]). Variation in intraskeletal bone
&"°N ranged from 0.3 %o in walrus and dusky dolphin [41,42] to 1.3 %o in South American
sea lion (Otaria flavescens) (among atlas, humerus, and basioccipital [42]). However, other
studies could not detect intraskeletal variation when performing similar analysis; e.g.
Hyland et al. [43] did not detect differences in isotopic composition between cortical
and trabecular bone in harp seals (Pagophilus groenlandicus).

Intraskeletal bone variation in §">C and 6'°N has also been investigated in terrestrial
mammals (e.g. in humans [39]; in cow (Bos taurus), pig (Sus domesticus), long-tailed
weasel (Mustela frenata), and raccoon (Procyon lotor) [43]). Using an isotopic distance
value estimated from 6'3C and &'°N bivariate plots, Hyland et al. [43] detected an
average isotopic distance value of bone sampled within individuals of 0.52 %o. Our
results showed intraskeletal variation between bone and various dentine elements. In
narwhal, we found a species-wide variation in §'3C of 0.51 +0.33 %o between tusk and
bone, and 0.45 + 0.38 %o between embedded tooth and bone. For §'°N, these values
were 0.49 + 0.44 %o and 1.54 + 0.57 %o, respectively. In beluga, the 6'3C average differ-
ence between tooth and bone was 0.37 + 0.26 %o; for 6'°N, it was 0.59 =+ 0.69 %eo.

5. Conclusions

Paleoecological inference from museum specimens is crucial for elucidating changes in
populations and species across time and space. However, the same skeletal element is
often not available across specimens. Bone and dentine collagen are known to show sys-
tematic differences in 6'3C and 6'°N [44]. Thus, analyzing them together without apply-
ing a correction factor may influence biological inferences. Here, we estimate and apply a
correction factor to our data from narwhal and beluga, and transform dentine values to
bone-collagen equivalent. Our approach assumes that one correction factor can be
broadly applied to transform dentine collagen to bone-collagen equivalent, and that
data from different bone skeletal elements can be analyzed in unison. Application of
our correction factors allow the direct comparison of §'>C and 8'°N retrieved from
these different skeletal elements (Figure 1 and Table 2). We acknowledge that our
approach may not capture the full variation of skeletal stable isotopes within an individ-
ual. However, using the correction factors when analysing stable isotope data retrieved
from bone and dentine reduces a large fraction of the intraskeletal variation. This
approach has been successfully applied to terrestrial mammals (e.g. [2] reviewed the
topic for several species). We suggest applying these correction factors to some kind of
bulk dentine sample, rather than to targeted layers of dentine, especially those layers
representing the earliest years of life with presumably the highest 6'°N values. In that
way, the dentine 6'°N values (as in our case) would be more analogous to bone than
those from targeted layers. Here, we show the applicability of skeletal correction
factors in two marine mammal species: narwhals and beluga. When dentine values
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were transformed to bone-collagen equivalents using our approach, they fall within the
range of known bone §'3C and &'°N values for these species, demonstrating their appli-
cability (Figure 1).
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