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Abstract

Management of camelids in the coastal valleys of the Andes has generated much debate in

recent years. Zooarchaeological and isotopic studies have demonstrated that in the coastal

valleys of northern and southern Peru there were locally maintained camelid herds.

Because of the hyperarid conditions of the northern coast of Chile, this region has been

assumed to be unsuitable for the raising of camelids. In this study we report stable carbon

and nitrogen isotopic compositions of camelid bone collagen and textiles made from camelid

fiber from Late Intermediate Period (LIP) and Late Horizon (LH) occupations in northern

Chilean river valleys. The camelid bone collagen isotopic compositions are consistent with

these animals originating in the highlands, although there is a significant difference in the

camelids dating to the LIP and LH, possibly because of changes made to distribution and

exchange networks by the Inca in the LH. There were no differences between the isotopic

compositions of the camelid fibers sampled from textiles in the LIP and LH, suggesting that

either the production of camelid fiber was unchanged by the Inca or the changes that were

made do not present visible isotopic evidence. Several camelid fiber samples from both the

LIP and LH present very high δ13C and δ15N values, comparable to human hair samples

from one site (Huancarane) in the Camarones Valley. These data suggest that people in the

northern valleys of Chile may have kept small numbers of animals specifically for fiber pro-

duction. Overall, however, the vast majority of the textile samples have isotopic composi-

tions that are consistent with an origin in the highlands. These data suggest that the

hyperarid coastal river valleys of northern Chile did not support substantial camelid herds as

has been interpreted for northern Peru.

Introduction

Camelids (llama [Lama glama] and alpaca [Vicugna pacos]) were the only species of large ani-

mal to be domesticated in the Americas. Although they were not used for milk and traction,
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they were used extensively for their meat [1–3] and leather [4, 5], as beasts of burden in cara-

vans [6, 7], and their dung was used for fertilizer and fuel [5, 8, 9]. Their most important eco-

nomic role, however, was the production of fiber to be used to manufacture textiles. These

textiles were of tremendous economic, social, and political importance throughout the Andean

region [10, 11]. The Inca extracted labor taxes of rough cloth from households and also utilized

fine cloth woven by high status, specialist weavers [12–14]. Under Inca control during the Late

Horizon the mit’a was an institutionalized labor service through which conquered peoples

paid tribute, providing an important source of income for the state [13, 15]. The mit’a con-

sisted of a rotational labor system, including herding camelids, farming, and weaving, among

other activities. The textile mit’a was one of the most important, since clothing was the object

most valued by the Inca state in economic, political, and ritual terms [11, 13]. In the textile

mit’a the state provided high quality fiber which was spun and woven into fine cloth, while

women might have supplied their own tools [16].

Because textiles worn as clothing were highly visible, they were important embodiments of

social identity, status, and power [17–19]. The way that scholars have thought about the role of

camelids in Andean societies is strongly influenced by ethnographic and ethnohistoric descrip-

tions, particularly those associated with the Inca. Based on these data, camelids have been seen

as animals that reside in the high altitude grasslands of the altiplano (above 3,800 masl) and

their presence in archaeological deposits outside of this narrow altitudinal range is sometimes

assumed a priori to represent the presence of meat (dried as charqui) or fiber that was acquired

via exchange with the highlands. Based on an extensive synthesis, Bonavia [20] concluded that

there is little empirical evidence to support the notion that camelids are high altitude special-

ists, tracing the origins of this back to a statement made by Troll [21]. Bonavia [20] suggests

that the natural habitat of the camelids “extends from sea level to altitudes over 5,000 masl,

from the coastal deserts and fertile intermontane valleys to the high punas and the exuberant

wet region of the ceja de selva, with all of the intermediate life zones that are far more varied

than usually thought” (see also [22]).

Mounting isotopic evidence from the north coast of Peru has demonstrated the presence of

local camelid populations in these areas from at least the Early Intermediate Period (c. 200 BC)

[23–28]. Moreover, isotopic data demonstrate that camelids (probably llamas) were raised in

an urban environment at the Wari site of Conchopata and intensively foddered with maize

(>75% of the diet [29]). Shimada and Shimada [30] summarized other lines of evidence,

which are also consistent with the raising of camelids on the north coast of Peru since at least

the Middle Horizon (c. AD 600). Isotopic data indicate that meat and fiber was derived from

local animals [26, 31, 32]. This finding runs counter to the widely-held assumption that the

fiber in textiles found at low elevation sites must have originated in the highlands [19, 33],

although in some cases (i.e., Chancay, central Peruvian coast, Late Intermediate Period) the

fiber was exclusively imported from the highlands [31]. Nevertheless, these data are consistent

with Bonavia’s conceptualization of camelids as highly adaptable to a wide variety of environ-

ments. What is still unclear, however, is just how widespread the occurrence of non-highland

camelid husbandry was in the Andean region. The fact that these animals could survive in a

given environment does not mean that they did.

The purpose of this study was to investigate if the inhabitants of two of the northern valleys

of Chile (Lluta and Camarones) maintained local populations of camelids during the Late

Intermediate Period and Late Horizon. Isotopic compositions of camelid skeletal remains sug-

gest that these individuals most likely lived in the altiplano, although there were significant dif-

ferences in the isotopic compositions of the LIP and LH camelid samples. The majority of

fiber samples from textiles recovered from both LIP and LH contexts also originated in the
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altiplano, but a small percentage of the fibers from both periods were most likely derived from

local animals, raised under very arid conditions at lower altitudes.

Setting and archaeological context

The environment of our study area is one that is, in many ways, intermediate between south-

ern Peru to the north and the central Atacama Desert to the south. The study area is located in

the northern section of the Atacama Desert between 18˚ and 19˚S [34]. Unlike the coast,

which offers abundant and stable marine resources, the inland valleys of the northern Atacama

Desert are comparatively unstable places for human occupation, due to low biological produc-

tivity, limited availability of fresh water, periodic droughts, and overall lower predictability of

resources [35].

The Lluta and Camarones rivers originate in the highlands (Lluta at 3,900 masl and Camar-

ones at 2,900 masl), draining into the Pacific Ocean. They are the only rivers in northernmost

Chile that present permanent runoff throughout the year, but occasional prolonged droughts

may cause their runoff to terminate in their lower courses [36]. These rivers are characterized

by extremely high concentrations of metals (As, B, Cu, Li, Na, K) [37], which limits the quan-

tity and quality of wild vegetation, restricting it to the riverbed and areas fed by spring water.

In fact, the sites under study are strategically located in association with fresh water springs.

The limited vegetation coverage and the quantity and quality of water available in the Lluta

and Camarones valleys make them unsuitable for supporting large numbers of animals, both

wild and domesticated. Pre-Hispanic populations inhabiting these valleys had access to a lim-

ited variety of plants, seeds, and fruits. Agriculture generated important complementary

resources, although also limited in variety (possibly only maize in pre-Hispanic times).

According to regional paleoclimate records, since 3,000 BP the current hyper-arid condi-

tions have predominated in the Atacama Desert, although there were significant increases in

rainfall at various intervals including 1050–600 cal. BP − the Medieval Climatic Anomaly

(MCA), which roughly coincides with the Late Intermediate Period and Late Horizon [38–40].

Although climatic conditions were similar to those at present, these rainy events would have

been more frequent during the MCA and would have meant a recharge of the fluvial and

spring water resources. It is presumed, therefore, that there was greater vegetation coverage

and more water available during the periods under study than there is presently.

The Late Intermediate Period and Late Horizon witnessed the development of the Arica

Culture as a group of segmented societies that shared a common cultural tradition, although

they did not comprise a single political entity. These communities practiced a mixed agro-

maritime subsistence and had differential settlement and architectural patterns, as well as

interactions with other groups [41–43]. During the Late Horizon, the impact of the Inca in the

region is demonstrated by multiple lines of evidence, including typical Inca-style goods, as

well as other proxies for changes in local economic activities, settlement patterns, and health

conditions [44–46].

The samples analyzed in this study are from five small villages: four from the Lluta Valley

(Rosario 2 [LL36], Sora Sur [LL19], Poblado Millune [LL21], and Vinto 1–2 [LL93]), and one

from the Camarones Valley (Poblado Huancarane 1) (Fig 1). LL36 was excavated in 1995 by

Calogero Santoro [47]. LL19, LL21, and LL93 were excavated in 2011–2012 [48]. Huancarane

was excavated in 1978 by Niemeyer and Schiappacasse and its collection was studied in 2015 at

the Museo Nacional de Historia Natural (Santiago de Chile). Radiocarbon dates for these sites

are summarized in Table 1. All dates listed in Table 1 were calibrated in Calib v7.0.4 [49] using

SHCal13 [50].
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The archaeological site LL-36 (Rosario 2) is a hamlet located 16 km from the Pacific coast,

composed of totora (reed) walled rectangular structures raised on artificial platforms rein-

forced with frontal stone walls, to level the steep slope of the valley [43]. Based on stratigraphy,

radiocarbon dating, and ceramic components, it has been estimated that the earliest

Fig 1. Map of the study area. Relevant toponyms mentioned in the text and study area (box) with archaeological sites including in this study.

https://doi.org/10.1371/journal.pone.0228332.g001

Table 1. AMS radiocarbon dates obtained from the studied sites.

AMS Lab AMS Lab ID Material Sample 14C Age years BP ± Site Precint/ Square cal AD (1σ Range, SHCAL13) Probability Reference

Beta 336650 Plant (seed) 290 30 LL-019 URC1-I 1626–1668 0.814 [48]

Beta 294874 Charcoal 590 30 LL-019 URC-1/III-IV 1393–1424 1 [48]

Beta 336649 Plant 590 30 LL-019 URC-1/III-IV 1393–1424 1 [48]

Beta 294873 Charcoal 640 30 LL-019 URC-1/II 1319–1351 0.714 [48]

Beta 336652 Plant (seed) 390 30 LL-021 URS2-I 1575–1622 0.506 [48]

Beta 180800 Charcoal 450 60 LL-021 R11/N5 1432–1507 0.755 [48]

Beta 294875 Charcoal 450 30 LL-021 URS2-I 1445–1489 1 [48]

Beta 336651 Maize (seed) 490 30 LL-021 URS2-II 1432–1456 1 [48]

Beta 336656 Maize (seed) 360 30 LL-093 URC2-II 1504–1589 0.875 [48]

Beta 294877 Charcoal 370 30 LL-093 URC2-II 1537–1599 0.618 [48]

Beta 336657 Plant 390 30 LL-093 URC2-II 1575–1622 0.506 [48]

Beta 336655 Plant (seed) 620 30 LL-093 URC2-III-IV 1323–1346 0.536 [48]

Beta 336654 Maize (seed) 630 30 LL-093 URC1-III-IV 1321–1349 0.636 [48]

Beta 294876 Charcoal 680 30 LL-093 URC2-III-IV 1300–1324 0.381 [48]

DirectAMS 23334 Maize (seed) 380 45 Huan-001 Precint 74 1541–1625 0.722 unpublished

Beta 434056 Basket 530 30 Huan-001 Precint 132 1418–1443 1 unpublished

DirectAMS 23335 Maize (seed) 700 30 Huan-001 Precint 79 1353–1383 0.567 unpublished

Beta 101496 Charcoal 430 80 LL-36 Precint 58-Level 5 1442–1512 0.541 [51]

https://doi.org/10.1371/journal.pone.0228332.t001
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occupation was brief, corresponding to the Late Intermediate Period. More intense occupation

occurred during the subsequent Late Horizon, as the inhabited surface of the site became

larger, and midden deposits are more dense. The site is also distinguished by the occurrence of

typical Inca goods (mainly ceramics, such as Inca Polychrome and Saxamar or Inca-Pacaje

types, and some fragments of khipu) and a large number of exotic goods. Domestic remains

show consumption of a wide array of marine resources (e.g., mollusks, fish, seaweed, sea stars),

terrestrial fauna (e.g., camelids, guinea pigs), wild plants (e.g., molle, totora), crops (e.g., cot-

ton, pumpkin, bean, ch’uño, and corn), mineral copper beads, basketry, weaving tools, and

abundant textile remains. Systematic analysis of ceramics indicates important changes related

to the Inca influence [46, 47, 49].

LL-19 (Sora Sur), located 48 km from the Pacific coast, is a small village of circular precincts

made of stones [48]. An occupation from the Late Intermediate Period and another from the

Late Horizon were found during excavation. Generally, there are no significant differences

between the material culture and biological remains from these two periods, which consist of

wild plant remains (e.g., Schinus molle, Prosopis sp.), crops (Lagenaria sp. and Zea mays), and

lithic artifacts. Camelids and other terrestrial fauna such as canids and rodents (e.g., Chaeto-
phractus nationi, Chinchilla sp., Cricetidae) are scarce. Marine fauna is also represented by a

small number of mollusks (Choromytilus chorus, Littorina peruviana, Mytı́lido, Perumytilus
purpuratus) and unidentified fish. Some textiles (mainly yarns) were also recovered. Local

(e.g., Pocoma, San Miguel, and Gentilar) and highland (e.g., Black on Red and Charcollo) pot-

tery types occur in both strata, with Inca Imperial ceramics limited to the Late Horizon

stratum.

LL-21 (Poblado Millune, 54 km from the Pacific coast) is a complex village of circular pre-

cincts made of stones, organized in differentiated sectors: habitation, storage, and funerary

[48]. The excavated deposit contained an occupation that was assigned to the Late Horizon.

The materials recovered include local (e.g., San Miguel), highland (e.g., Chilpe, Charcollo),

and Inca Imperial pottery, lithic and plant artifacts, and textiles (mainly yarns). There is a pre-

dominance of plant remains, with both wild (e.g., Prosopis sp., Schinus molle, Equisetum sp.,

Typha angustifolia) and domesticated (e.g., Cucurbita sp., Gossypium sp., Lagenaria sp., Zea
mays) species represented. Faunal remains are relatively scarce, with the assemblage consisting

of terrestrial mammals (e.g., Camelidae, Lama sp., Lycalopex sp., Chinchillidae, Cricetidae),

mollusks (e.g., Choromytilus chorus, Perumytilus purpuratus), and finfish (Trachurus
murphyi).

LL-93 (Vinto 1–2, 57 km from the Pacific coast) is a hamlet composed of residential, funer-

ary, storage, and public use structures (kancha, i.e., enclosure) [48]. Three occupations were

identified, dating to: the Late Intermediate Period, Late Horizon, and Colonial Hispano-Indig-

enous Period. The material culture throughout these periods does not show significant

changes in composition and consists of lithic artifacts, and mollusk and plant tools. Ecofacts

include gathered plant remains (e.g., Prosopis sp., Phragmites australis, Schinus molle, Tessaria
abdinthioides, Equisetum sp., Scirpus sp., Typha angustifolia, Tessaria abdinthioides), crops

(Cucurbita sp., Gossypium sp., Zea mays, Capsicum sp.), camelids (Camelidae, Lama sp.,

Vicugna sp.), rodents (Cavia sp., Caviomorpho, Chinchillidae, Cricetidae, Lagidium sp.), and

other unidentified mammals. Coastal resource procurement is evidenced by the presence of

mollusks (Choromytilus chorus, Scurria scurra, Tegula spp). Some textiles (mainly yarns) were

also recovered. The ceramics include highland types (e.g. Charcollo) and, in late periods, Inca

Imperial styles. The colonial occupation of the site was documented by the presence of skeletal

remains of Old World taxa and Hispanic pottery.

Huancarane 1 (60 km from the Pacific coast) is a village composed of stone structures, with

differentiated areas (habitation, storages, and funerary) architecturally similar to the Lluta

Camelid husbandry in the Atacama Desert? An isotopic study from northern Chile
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villages described above [48]. The archaeological material comes from the excavation of habi-

tation and storage structures, although stratigraphic information is lacking. The evidence

recovered from the excavations includes cultivated (Zea mays, Phaseolus sp., Lagenaria sp.,

Gossypium sp.), and wild plant remains (Prosopis sp.), lithic artifacts, wood, and textiles [52].

Some fiber samples were microscopically analyzed and identified as llama, guanaco, and vizca-

cha (Lagidium sp.) by Niemeyer and Schiappacasse [52]. The pottery includes LIP Pica-Tara-

pacá, Arica, Altiplano and Inca components [53]. Marine mollusks (Choromytilus chorus,
Oliva peruviana, Cryphiops caementarius) and freshwater crustaceans (Cryphiops caementar-
ius) were recorded, but both were scarce. On the contrary, abundant remains of terrestrial

fauna were recovered, including camelids, rodents (Chinchilla sp), and other unidentified

mammals.

Isotopic context

The application of isotopic analysis in the study of animal husbandry and the trade in animal

products is a rapidly growing area of inquiry. Some isotope systems, such as hydrogen, oxygen,

strontium, and lead, record the location in which an animal lived [54], and these techniques

have been applied with some regularity in archaeological contexts to address the trade in

animal products [55–59]. Stable carbon and nitrogen isotope compositions are not tied to

geography in the same way as these other isotope systems, but in certain regions where envi-

ronmental variation is large over relatively small spatial scales or particular feeding practices

that are isotopically unique exist, carbon and nitrogen isotopes can be an effective means of

assessing the locality of animals and animal products in the archaeological record [31, 32, 60].

The carbon and nitrogen isotope compositions of a consumer’s tissues reflect the average

carbon and nitrogen isotope compositions of the foods consumed during the period of tissue

formation [61, 62]. The carbon in bone collagen is predominantly routed from dietary protein

[63, 64]. Herbivore tissue δ13C and δ15N therefore reflect the δ13C and δ15N of the plants that

they consumed [65, 66], which are in turn sensitive to a number of environmental parameters

[67, 68].

Photosynthetic pathway is the primary mechanism influencing the δ13C values of plants.

Excluding plants growing under dense forest canopy, C3 plants have δ13C values that range

between −35 and −20 ‰ with a mean of c. −27 ‰; C4 plants (predominantly tropical grasses)

have δ13C values that range between −15 and −7 ‰ with a mean of −12 ‰; CAM plants (cacti,

succulents, and epiphytes) have δ13C values that range between −22 and −10 ‰ [69–71]. C3

plant δ13C values are sensitive to environmental variation through influences on the ratio of

ambient to intercellular partial pressure of CO2 [67, 72]. The δ13C values of C3 plants are corre-

lated with water availability such that plants growing in arid conditions have higher δ13C val-

ues than those growing in wetter conditions [73–76]. Water availability does not appear to

influence C4 plant δ13C [75, 77], which are generally less sensitive to environmental variation

and exhibit a much narrower range of δ13C values than C3 plants [72]. The entire region con-

sidered for this study is characterized by low water availability, therefore, wild C3 plants will

have δ13C values that are higher than the global average. In a series of altitudinal transects

between 22˚S and 25˚S in northern Chile, Quade et al. [78] found the average δ13C of C3 plants

to be −23.1 ‰ (c. −21.6 ‰ after accounting for the Suess Effect). Similarly, Rundel et al. [79]

found the average δ13C of C3 plants growing in the pre-puna shrubland zone (c. 3,550 masl) at

18˚S to be −24.1 ‰ (c. −22.8 ‰ after accounting for the Suess Effect). The δ13C of the overall

biomass at high altitudes (>3,500 masl) is still lower than at low altitudes because of the rarity

of C4 plants [80, 81]. Despite the rarity of C4 plants in the arid highland regions of northern

Chile, the δ13C values of herbivores consuming pure C3-diets should be relatively high. In In
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this region, herbivore δ13C values of −18 ‰ do not necessarily imply the consumption of any

C4 plants assuming a consumer-diet trophic enrichment factor (Δ13C) of c. +5 ‰ [82]. Soil

salinity also influences the δ13C values of plants, with high values occurring with increasing

soil salinity [83–85]. Finally, plants growing under dense forest canopies have lower δ13C val-

ues than plants growing in open habitats [86–88], although this particular variable is not rele-

vant for this study as the area lacks the necessary tree cover.

Plant tissue δ15N values are determined primarily by the N source [68], the most important

of which are mineralized N (NO3
− and NH4

+) and atmospheric N2 [89, 90]. Some plants in

environments with low mineralization rates (typically boreal and arctic environments) also

rely to a significant extent on organic N [91]. There is essentially no discrimination against 15N

during the conversion of N2 to NH3, a process that is known as biological nitrogen fixation

(BNF [92, 93]). Plants that have the capacity to rely on N2 through symbiotic associations with

bacteria (primarily legumes, Fabaceae) therefore tend to have δ15N close to that of atmospheric

N2 [94–96], which is 0 ‰ [97]. The reliance on N provided through these symbiotic associa-

tions is, however, metabolically expensive and if soil N availability is high, legumes and other

taxa capable of BNF will rely on mineralized N sources [94].

The types of mycorrhizal associations that plants form are also an important factor in influ-

encing plant δ15N, with plant values being highest in non-mycorrhizal and arbuscular mycor-

rhizal (AM) plants, lower in ectomycorrhizal (EcM) plants, and lowest in ericoid (ErM)

myccorhizal plants [98, 99]. Generally there is latitudinal variation in the distribution of

mycorrhizal types, following trends in temperature and soil N mineralization rates, with AM

plants dominating in temperate grasslands and savannahs, EcM plants dominating in temper-

ate forests and boreal taiga, and ErM dominating in high latitude tundra [100, 101]. Altitudinal

trends in mycorrhizal associations are less well studied, but it appears that AM abundance

declines with altitude, EcM abundance peaks at mid altitudes (1,000 to 2,500 masl), and the

abundance of ErM is generally limited by the distribution of their plant partners, the Ericaceae,

which tend to occur in acidic soils with low N availability [102].

In agricultural systems, additional N may be added to the soil through fertilization. The use

of N derived from fertilizers has the capacity to increase plant δ15N values by a few ‰ for

manure derived from domestic herbivores such as cattle or camelids [103–105] to greater than

20 ‰ for seabird guano [94, 105, 106]. Both types of fertilizer would have been potentially

available in the study area and in fact the only convincing evidence of the prehistoric use of

seabird guano as a fertilizer to date comes from the Atacama Desert immediately south of our

study area [107].

Plant δ15N tends to be positively correlated with temperature [108, 109] and negatively cor-

related with water availability [65, 74, 75, 98, 108, 110]. Because average temperature decreases

and annual precipitation increases moving from the Pacific coast and into the highlands of

Peru and Chile, plants growing at high altitudes have lower δ15N than those growing at lower

altitudes [111]. That said, the high altitude puna of northern Chile is distinct from that which

exists in Peru in that it is far more arid. This region does receive more precipitation than the

coast, but the region is still arid, with the northern Chilean dry puna receiving 300−350 mm of

annual precipitation [112]. Despite the aridity of the puna, studies conducted in the hyperarid

salt puna around 23.5˚S [113] and in the Argentine dry puna [114] found plant δ15N values to

be comparable to those observed in the highlands of northern Peru (c. +2 to +6 ‰) [111].

Given that herbivores tissue δ15N values are 3 to 4 ‰ higher than the plants that they consume

[115], we would expect camelids that lived in the puna to have tissue δ15N values between +5

and +9 ‰. This expectation requires testing through the collection of isotopic data from

archaeological camelids recovered from sites in the highlands of northern Chile. For animals

living in the low altitude coastal river valleys of northern Chile we expect much higher δ13C
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and δ15N values than those living in the highlands driven primarily by the influence of aridity

on plant δ15N values and the greater abundance of C4 plants, particularly cultivated maize,

which could have been used as fodder for camelids.

Materials and methods

Sample preparation

Bone collagen was extracted by demineralizing chunks of bone (c. 200 mg) in 0.5 M HCl at

room temperature under constant motion (orbital shaker) for 7 days with periodic changing

of the acid solution. After demineralization, the samples were rinsed to neutrality with Type I

water and then those samples that were darkly colored were treated with 0.1 M NaOH for 20

min under constant motion (orbital shaker). If after 20 min the solution changed color, the

solution was removed and fresh NaOH solution was added. Once there was no color change in

the solution after 20 min, the samples were rinsed to neutrality with Type I water. The samples

were then heated at 75˚C for 36 h in 4 ml of 10−3 M HCl. After heating the solution containing

the water-soluble collagen was transferred to a vial and freeze-dried.

The textile samples were cleaned of any visible particulate matter with a dental pick. The

samples were then sonicated in Type I water for 60 min, centrifuged and air-dried. The textiles

samples were then sonicated in 2:1 chloroform-methanol (v/v) for 60 min, centrifuged and

air-dried.

Isotope ratio mass spectrometry

Carbon and nitrogen isotopic and elemental compositions were determined using a Nu Hori-

zon continuous flow isotope ratio mass spectrometer couple to a EuroEA 3000 elemental ana-

lyzer at Trent University. Sample isotopic compositions were calibrated relative to VPDB

(δ13C) and AIR (δ15N) using USGS40 and USGS41a or USGS66 [116–118] (S1 Appendix). Ele-

mental compositions were calibrated using USGS40. Analytical uncertainty was assessed using

four internal standards interspersed among the samples and 20% of the samples were analyzed

in duplicate (S1 Appendix). Standard uncertainty was determined to be ±0.20 ‰ for δ13C and

±0.29 ‰ for δ15N [119].

Sample integrity

Quality criteria are not as well established for ancient keratin as they are for collagen. Boudin

et al. [120] found an atomic C:N ratio range of 3.4−3.8 to be reliable within the context of 14C

dating of wool. von Holstein et al. [121] found minimal changes to the carbon and nitrogen

isotope compositions of wool textiles undergoing experimental degradation. Our approach to

monitor for textile samples with unreliable isotopic compositions altered by post-depositional

processes was informed by the approaches of Ambrose [122] and DeNiro [123] for bone colla-

gen. DeNiro defined an acceptable range of 2.9–3.6 for unaltered collagen by examining the

elemental and isotopic compositions for different taxa and noting that the collagen samples

with C:N ratios outside the range of 2.9–3.6 tended to produce isotopic compositions that

were too high or too low (S1 Appendix). Subsequently, others have discussed other quality

control measures [122, 124–126], but DeNiro’s range of 2.9–3.6 for atomic C:N ratios remains

the most frequently cited quality control measure in isotopic studies of ancient collagen [119].

We have taken a similar approach to DeNiro and compared the isotopic compositions and the

atomic C:N ratios of the textiles analyzed in this study, as well as several others from the

Andean region (Fig 2).
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Fig 2. Relationship between isotopic and elemental composition of camelid fiber textiles. Carbon and nitrogen isotopic compositions of textiles analyzed in

this study, as well as other camelid fiber samples from previously published papers [26, 31, 32]. Samples are colored according to their atomic C:N ratio.

https://doi.org/10.1371/journal.pone.0228332.g002
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The data produced by DeNiro for bone collagen show clear differences in isotopic composi-

tions between samples with C:N ratios within vs. outside of the 2.9–3.6 range (S1 Appendix).

Specifically, the δ13C values tend to be especially low when the C:N ratios are outside of the

2.9–3.6 range and the δ15N values are much more variable (may be too high or too low). For

archaeological camelid fiber, the samples with relatively high and low C:N ratios were not dis-

tinct, unlike those presented for DeNiro’s bone collagen data. This difference may be because

highly degraded keratin does not survive in the burial environment while bones containing

virtually no residual organic matter are reasonably common.

Although Boudin et al. [120] defined an atomic C:N range of 3.4–3.8 as being acceptable for

radiocarbon dating sheep’s wool, modern camelid fiber samples produced a range of atomic C:

N ratios between 3.10 and 3.45 (n = 85) [24]. It therefore seems unreasonable to exclude data

based on criteria defined for another taxon that produces a distinct type of fiber [127]. For the

dataset presented in Fig 2, encompassing 452 analyzed camelid fiber samples from Peru and

Chile, a significant number of samples with atomic C:N ratios greater than 4 produced rela-

tively low δ13C and high δ15N values. Fourteen samples produced δ13C values less than −16 ‰

and δ15N values greater than +10 ‰. Of these fourteen, five (36%) had C:N ratios that were

greater than 4, while the number of fiber samples in the entire dataset producing C:N ratios

greater than 4 was 14 (3% of the total sample). On this basis, we excluded any samples with an

atomic C:N ratio over 4 from our analysis.

Data treatment

When comparisons were made between bone collagen and textile isotopic compositions, the

textile δ13C values were adjusted by +1.3 ‰ to account for inter-tissue differences in diet-tissue

fractionation. The isotopic composition of bone collagen represents the weighted average of

foods consumed over a period of several years [128]. While hair grows incrementally and is

inert once formed, the nature of textile samples is such that the period of time represented by

an isotopic measurement cannot be determined, nor is it certain that a single animal is repre-

sented in any particular fiber sample. Therefore, the isotopic compositions of textile samples

represent an average dietary intake over an indeterminate amount of time. It is therefore

important to generate larger numbers of isotopic measurements of textiles than of bone colla-

gen to adequately capture the variability within a single site or context.

To assess differences in the isotopic compositions between periods or regions, one of the

following tests were used: Student’s t-test (normally distributed, equal variances), Welch’s t-

test (normally distributed, unequal variances), or Mann Whitney U test (non-normally distrib-

uted). Normality was assessed using a Shapiro-Wilk test. Equality of variance was assessed

using Levene’s test. The presence of discrete isotopic groups in the textile dataset was assessed

using an unweighted pair group method with arithmetic mean cluster analysis with a Euclid-

ean distance function.

The amount of bivariate isotopic variation was estimated using the standard bivariate ellipse

in the SIBER package [129]. Ellipse sizes reported in the text are standard ellipse areas cor-

rected for sample size (SEAc). Comparisons between ellipses were performed with 104 iterative

draws (SEAb) with the results being expressed as the percentage of computed ellipses for

Group 1 that are larger than the computed ellipses for Group 2; a value of 0.50 indicates the

two ellipses are identical in size, while a value of 1 or 0 would indicate that the ellipses for

Group 1 are always larger or smaller than those for Group 2.

The cluster analysis was performed using Past 3.20. The SIBER calculations were performed

in R 3.0.3; the scripts are included in the supplementary information (S1 File). All other statis-

tical tests were performed using IBM SPSS 23.
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Results

Bone collagen

The bone collagen δ13C and δ15N values are presented in S1 Table and Fig 3. The camelids

from the Late Horizon possessed significantly higher δ13C values than those dating to the LIP

(Welch’s t-test; t = −3.46, df = 8.59, p = 0.008); the δ15N values did not differ between the two

periods (Welch’s t-test; t = −0.46, df = 9.36, p = 0.65). There was no overlap between the stan-

dard ellipses generated for the camelid bone collagen dating to the LIP and LH (Fig 3). The

Fig 3. Bone collagen δ13C and δ15N values for camelids from the Lluta Valley along with the standard bivariate ellipses for the two time periods. Late Intermediate

Period samples are indicated by squares and Late Horizon samples are indicated by circles.

https://doi.org/10.1371/journal.pone.0228332.g003
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bivariate isotopic variation observed for the LH camelids was much greater than for the LIP

camelids (SEAc of 10.4 compared to 3.0), with the modeled ellipses of the LH group being

larger than the LIP group in 99% of the comparisons.

Textiles

The textile carbon and nitrogen isotopic and elemental compositions are presented in S2

Table. There were two distinct groups of textiles, one with lower δ13C and δ15N values and one

with higher δ13C and δ15N values (Fig 4); these groupings were confirmed with a cluster analy-

sis (Fig 5). For the purposes of further analysis, each cluster was considered a distinct data set

and they are referred to as Textile Group 1 (δ13C = −19.77±1.05 ‰, δ15N = 8.19±2.07 ‰,

n = 60) and Textile Group 2 (δ13C = −14.44±1.55 ‰, δ15N = +13.97±1.63 ‰, n = 12). Relative

to the overall textile sample, the two groups contained similar proportions of samples from the

Lluta (45% of Group 1, 44% of overall sample) and Camarones (55% of Group 1, 56% of overall

sample) valleys, as well as the LIP (58% of Group 1, 57% of overall sample) and LH (34% of

Group 1, 36% of overall sample). Therefore, the presence of these two textile groups could not

be explained by a regional or temporal effect.

Within Textile Group 1, samples from the LIP and LH did not differ significantly with

respect to their δ13C (Mann Whitney U test; U = 385.5, p = 0.36) or δ15N (Student’s t-test;

t = 1.70, df = 61, p = 0.09). The textile samples within Group 1 from the Lluta Valley had signif-

icantly higher δ15N values than those from the Camarones Valley (Student’s t-test; t = 3.11,

df = 66, p = 0.003), although there were no significant differences in δ13C between the two val-

leys (Mann Whitney U test; U = 541, p = 0.86).

After adjusting for differences in fractionation between tissues, Textile Group 1 had similar

isotopic compositions to the camelid bone collagen samples from the sites in the Lluta Valley,

falling between the LIP and LH bone collagen ellipses (Fig 6). Textile Group 2 possessed

markedly higher δ13C and δ15N values than either the LIP or LH bone collagen datasets from

the Lluta Valley (Fig 6).

Unspun fleece samples had higher δ13C and δ15N values (δ13C = −16.57±4.52 ‰, δ15N =

+9.33±3.70 ‰, n = 15) than spun yarns (δ13C = −19.19±2.40 ‰, δ15N = +8.54±2.56 ‰,

n = 56). This difference was statistically significant for δ13C (U = 236, p = 0.01) but not for

δ15N (U = 409, p = 0.88). A higher proportion of the Group 2 textiles consisted of unspun

yarns (n = 5 or 50%) relative to Group 1 (n = 10 or 14%).

Discussion

Camelids originating in the highlands

The bone collagen δ13C and δ15N values of the Lluta Valley camelids are consistent with a

highland origin. The LIP and LH camelid bone collagen δ13C and δ15N values are summarized

as standard bivariate ellipses and compared to camelids from other relevant sites where the

camelids are known to have been raised in the highlands (Fig 7). Among the three comparative

sites, there is a pattern of increasing δ13C values with increasing latitude, with the lowest values

at Chinchawas (~9.5˚S), intermediate values at Tiwanaku (~16.5˚S), and the highest values for

sites on the Tulan transect (~23.5˚S). This pattern likely has nothing to do with increasing

quantities of C4 plants in the diet with increasing latitude, but with increasingly high δ13C val-

ues as the puna environment becomes drier moving north to south, transitioning from moist

puna to dry puna to salt puna [112, 130]. In light of their δ15N values, both the LIP and LH

camelids from the Lluta Valley sites lived in areas that were more arid than those at either

Tiwanaku or Chinchawas. The northern Chilean puna is the most likely origin for these
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Fig 4. Stable carbon and nitrogen isotope compositions of all of the textile samples analyzed.

https://doi.org/10.1371/journal.pone.0228332.g004
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Fig 5. Results of the cluster analysis for the textile and human hair samples.

https://doi.org/10.1371/journal.pone.0228332.g005
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camelids, but the stark isotopic difference between the LIP and LH camelids from the Lluta

Valley sites requires further discussion.

Changes in geographic origins of camelids during the late horizon

The LH camelids from the Lluta Valley can be divided into two groups, one with lower δ13C

and δ15N values, and one with higher δ13C and δ15N values; the latter group is largely responsi-

ble for the difference between the two periods (Fig 3). This apparent division among the LH

Fig 6. Comparison of the camelid bone collagen and textile isotopic compositions. Comparisons are based on standard ellipse areas for the camelid bone collagen

from the LIP and LH in the Lluta Valley and the two textile groups (as determined by the cluster analysis) for the Lluta and Camarones Valleys. The textile δ13C values

have been adjusted by +1.3 ‰ to make them directly comparable with the bone collagen.

https://doi.org/10.1371/journal.pone.0228332.g006
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group may be driven by these camelids originating in two distinct geographic regions, one of

which is much drier (for the camelids with the higher δ13C and δ15N values) than the other

(for the camelids with the lower δ13C and δ15N values). Alternatively, camelids may have been

drawn from a more diverse range of environments overall during the LH, but because of the

small size of our sample, we have simply failed to capture the full range of this variability.

Regardless, our data suggest that there was a shift in the range of environments from which

camelids were obtained during the LH relative to the LIP.

Fig 7. Interregional comparison of camelid bone collagen isotopic compositions. Standard bivariate ellipses for the camelid bone collagen from the Lluta Valley and

various sites where the camelids are believed to have lived in the highlands: Chinchawas [31], Tiwanaku [131], and Tulan (Late Archaic/Early Formative) [132].

https://doi.org/10.1371/journal.pone.0228332.g007
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During the LIP, we suggest that the inhabitants of the Lluta Valley acquired their camelid

meat from the puna located adjacent to the northern valleys. In the northern valleys, the LIP

was a time characterized by regionalization in the wake of the Tiwanaku polity. One crucial

point of debate has been whether or not there was physical resettlement of groups from the

altiplano into the northern valleys following Tiwanaku’s demise [133, 134]. In a recent synthe-

sis, Muñoz et al. [42] conclude that, although there were Tiwanaku influences during this

period, there is no archaeological or bioanthropological evidence to support the presence of

Tiwanaku colonies in northernmost Chile. The influence of Tiwanaku is mainly expressed in

Cabuza and Tiwanaku pottery types. Cabuza was a locally produced and consumed style that

attempted to emulate Tiwanaku forms and decoration. The Tiwanaku style reproduces forms

and decorations of the expansive Tiwanaku Phase V, but has strong influences from Moque-

gua, suggesting its provenience in these valley in southern Peru, rather than the altiplano [135,

136]. Recently, radiocarbon dating carried out in Cabuza funerary contexts indicates that most

of the dates fall within the LIP, suggesting that the Tiwanaku influence may have been associ-

ated with people deserting the Titicaca Basin or colonies in Moquegua following Tiwanaku’s

demise [137]. Despite the lack of a strong influence of Tiwanaku on the northern Chilean val-

leys, the isotopic data from the LIP camelids suggests connections with the altiplano. During

the LIP, a variety of altiplanic goods (e.g., feathers, copper, obsidian, sulfur, pottery) have been

systematically recorded in lowland settlements possibly as a consequence of social interaction

networks, which were intensified during this period [41, 138]. Camelids could certainly have

been an important part of these interregional networks of interaction and exchange, particu-

larly in light of the fact that the sites analyzed in this study are 40 to 65 km from the contiguous

altiplano.

The fact that the LIP and LH camelids from the Lluta Valley were characterized by distinct

isotopic compositions suggests either a change in the geographical origin of the camelids or a

change in the way in which they were managed. These could be a consequence of the Inca

presence in the lowland valleys of northern Chile. Although no investment in state infrastruc-

ture is present, significant changes in the ways of life of the local communities, reorganization

of the economy and alterations in the political systems have been recorded as result of the Inca

control over this area. These changes are expressed in the incorporation of conspicuous Inca

prestige goods (e.g., aribalos, khipu, unku, tumi), the concentration of populations in larger vil-

lages, alterations of health conditions (intestinal parasites) as a result of overcrowded resi-

dences, and the intensification of maize and textile production, which demonstrate clear

alterations to the local way of life, although without a visible impact on the architecture [46,

139].

During the LH, rights over resources and lands were claimed as state property by Tawantin-

suyu (the Inca Empire) [140]. Camelids were strictly controlled and regulated by the Inca, with

three different types of herds: state, church, and community [12]. There were also exclusive

regulations for the use of hunting grounds of wild camelids, especially vicuña [141]. Addition-

ally, the Inca state employed redistribution as a socio-political and ideological mechanism to

control local populations, although a diverse range of economic structures almost certainly

existed within Tawantinsuyu [142]. Among the goods distributed to local communities, wild

and domesticated camelids are frequently mentioned in the chronicles [143]. Murra [144]

specifies that the camelids redistributed by the state did not come from the community herds,

but from the state herds. Chroniclers agree that relatively little camelid meat was consumed

during Inca times, except at feasts and ceremonies, although this assertion requires explicit

testing with archaeological data [145]. In some Andean regions an increase in the production

and/or consumption of camelids during the LH has been identified, typically interpreted
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within a framework of access to meat and livestock regulated and centralized by the Inca state,

sometimes in the form of state-sponsored feasts [140, 145–150].

Consequently, if the Inca state controlled the flow of camelids or their meat among the con-

quered provinces through state redistribution networks, then the camelids consumed in the

Lluta valley may have had a different geographical origin relative to those of the LIP because

they were the result of new animal distribution circuits associated with the redistribution net-

works controlled by the Inca state. During the Inca occupation of Tiwanaku (Pumapunku

complex), a pastoralist area par excellence, large quantities of camelids were consumed at state-

sponsored feasts. Of the basis of isotopic analyses, most of these camelids had a local origin but

some of them originated outside of the altiplano in the Titicaca Basin [151], possibly because

of the diverse origins of camelids from state herds. Although it cannot be established if the

camelid bone samples included in this study were associated with state-sponsored commensal

meals, some of them could have arrived in the Lluta Valley via redistributive networks.

Origins of camelid fiber

The fact that the isotopic patterns observed for camelid skeletal remains and fiber from textiles

are distinct from one another (Fig 6) suggests that animals raised for different purposes (i.e.,

meat vs. fiber) originated in different geographic areas, consumed different foods, or a combi-

nation of these. During the Late Horizon, camelid herds were segregated according to their

function: fiber, meat, and cargo [146, 149]. This is consistent with our results, but that fact that

there is no difference in the fiber isotopic compositions between the LIP and LH suggests that

the Inca did not influence the geographic regions from which fiber was being obtained in the

Lluta and Camarones Valleys. Alternatively, there may have been significant changes in the

regions of fiber production and the movement of these goods but if these changes occurred

within an isotopically homogenous highland environment, it would not be detectable with the

methods applied in this study. For example, if fiber production intensified during the Late

Horizon (more fiber produced from the same area of land being grazed [152]), possibly driven

by the extraction of tribute from some communities and the development of new categories of

specialized weavers [11, 44], this scenario may not have left traces in the isotopic compositions

of the textiles. On the other hand, if fiber production extensified (more fiber produced from

camelids being raised in a larger number of areas), we might expect to see isotopic evidence of

localized camelid husbandry, or at least non-altiplanic camelid husbandry, exclusively in the

Late Horizon. Some chronicles indicate that while for local textile needs fiber from the com-

munity was used, for the mit’a obligations, in contrast, the Inca state provided the fiber, which

came from state deposits [143, 144], likely located in the highlands. The presence of weaving

tools in households in the valleys of northern Chile suggest that textiles were being manufac-

tured locally even if the fiber was being imported from the highlands.

Considering the separation of herds for fiber and herds for meat as well as the diverse fiber

used for local needs versus for mit’a, the scenario outlined in the preceding paragraph could

suggest different circuits of distribution for meat and fiber during the Late Horizon. Textile

production for local consumption, which constitutes the majority of textile samples recovered

from these archaeological sites, continued to be dependent on the highlands for fiber, as was

during case during the LIP. On the contrary, for the textiles manufactured through mit’a
labor, we expect that the raw material would have originated in state fiber deposits. Moreover,

if the mit’a used either state or community fiber, it would likely not be possible to recognize

this distinction in the archaeological record because these textiles should have been redirected

from local households for state purposes and would not have remained in the area where the

fiber was produced [11]. Therefore, mit’a textiles should have low archaeological visibility in
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domestic contexts such as those sampled in this study. In some domestic contexts of the Lluta

Valley where important transformations of the Inca state have been verified, including the

relocation of populations and the presence of several khipu, a remarkable increase in spinning

and weaving tools has been identified, which is interpreted as a possible result of textile mit’a
obligations [44]. Isotopic analyses from contexts such as this may shed light on any changes in

fiber production during the Late Horizon.

Fiber originating outside of the highlands

A subset of the textile samples from both the LIP and LH have isotopic compositions that are

inconsistent with camelids that lived in the highlands (Figs 4 and 5). Given the greater impor-

tance of llamas for meat and their adaptability to a wider range of environments than alpacas

[153], which were primarily fiber producers [20], it is surprising that the textiles, rather than

camelid bone samples, appear to have non-highland origins. The issue of raising camelids in

the lowlands has not been studied systematically in northern Chile, either through the applica-

tion of isotopic analysis or traditional archaeological methodologies. Archaeological evidence

for the maintenance of camelid herds in the lowlands (although not their permanent presence)

includes corral-type structures found in villages [45, 52, 154–156] and concentrations of cam-

elid dung [45, 52, 157–160]. For northern Chile, sixteenth century ethnohistorical accounts

describe the maintenance of camelid herds in the lowlands and the tribute of livestock and

manufactured textiles to the Spanish Crown by local indigenous groups from Ilo, Tacna,

Arica, and Tarapacá [143, 161, 162]. If there were local herds oriented towards fiber produc-

tion, we would expect to see a significant quantity of unspun fleece with local isotopic signa-

tures. Consistent with this expectations, only 14% of the camelid fibers analyzed had isotopic

compositions consistent with a local origin but a disproportionately high number of these

(50%) were unspun fleece rather than spun yarns.

In addition to the textiles manufactured from camelid fiber, three textile fragments from

Huancarane were made of human hair. These three samples possess δ13C and δ15N values that

are very similar to the group identified as non-highland camelids (Fig 4). These human hair

isotopic compositions are comparable to other LIP and LH data from the region, although

humans from northern Chile possess highly variable tissue isotopic compositions [163–167].

The human δ13C and δ15N values are consistent with a substantial amount of maize in the diet

rather than marine foods as marine organisms from northern Chile possess extremely high

δ15N values due to strong upwelling and denitrification in this region [168, 169]. Human pop-

ulations in this region that relied on marine foods to a significant degree tend to the highest tis-

sue δ15N values among any human group, frequently in excess of +20 ‰ or even +25 ‰ [164,

170], substantially higher than those observed in this study: δ15N = +13.9 ‰, +15.0 ‰, and

+15.4 ‰.

The humans from which the hair was obtained were almost certainly locals and the fact that

the non-highland textile groups possesses very similar isotopic compositions suggests that

these animals may have consumed a similar range of agricultural plants to the humans living

in the Camarones Valley. If camelids were kept in these valleys, they would have needed to

consume significant quantities of agricultural plants because there is scarce wild vegetation on

which they could feed, although there may have been some fields composed of halophytic

grasses (Distichlis spicata) growing close to the coast at the river mouth based on the presence

of this plant today [171]. Distichlis spicata is a C4 plant and given its association with salty envi-

ronments, it might be expected to possess relatively high δ15N values [172] but this has not

been observed for northern Chile (δ15N = +4.6±3.1 ‰) [173] or northern Peru (−3.2 ‰)

[111]. The similarity in both δ13C and δ15N values between the camelid fibers and the human
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hairs are consistent with both humans and camelids consuming a similar range of agricultural

plants, suggesting that some animals were kept locally. An alternative possibility is that the

non-highland camelid hair was derived from wild guanacos living at these lower altitudes. If,

however, guanacos could consume a sufficient quantity of local plants, it begs the question as

to why this would not have been equally plausible for llamas.

The absence of any non-highland isotopic compositions in the camelid bone collagen simi-

lar to that observed in the textiles may simply be a product of sample size, or it may imply that

the primary motivation for keeping these animals locally was for fiber production rather than

for meat or transport, underscoring the quintessential importance of textiles and camelid fiber

in the Andean region [19, 174–176]. Niemeyer and Schiappacasse [52] estimated that given

the low number of juvenile camelids identified in faunal assemblages, animal husbandry was

oriented towards fiber production and/or transport, rather than for meat. However, they

believed that the fiber was obtained from the adjacent altiplano because the environment near

Huancarane would not be suitable for pastoral activities. They envisioned two strategies being

employed by the local people: (1) possession of pastoral lands and herds in the highlands, and

(2) the acquisition of livestock through exchange with llamas caravanners. These actions were

also observed during the 1970s by these authors in this sector of the Camarones Valley. Our

data suggest that by at least the LIP, groups living in the lower Camarones and Lluta Valleys

kept small numbers of animals locally, but acquired the majority of their fiber through

exchange with groups in the highlands. The reliance on imported fiber may have been driven

by the limitations of the environment for camelid husbandry, necessitating an external supply.

Conclusion

Our data suggest that the northern Chilean valleys were not able to support the same level of

camelid husbandry as the northern valleys of Peru, but people were still attempting to raise

small numbers of animals to produce fiber for textiles since at least the Late Intermediate

Period. There was a significant shift in the isotopic compositions of camelid bone collagen

between the LIP and the LH in the Lluta Valley, possibly because of alterations made to the dis-

tribution networks for camelids instituted by the Inca. These changes were not, however, visi-

ble in the textiles, which had comparable isotopic compositions between the LIP and LH.
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Peru (Virú Valley): Insight from stable isotope analysis. J Anthropol Archaeol. 2014; 36:110–29.

https://doi.org/10.1016/j.jaa.2014.08.005

25. Tomczyk W, Giersz M, Sołtysiak A, Kamenov G, Krigbaum J. Patterns of camelid management in

Wari Empire reconstructed using multiple stable isotope analysis: evidence from Castillo de Huarmey,

northern coast of Peru. Archaeol Anthropol Sci. 2018. https://doi.org/10.1007/s12520-017-0590-6

26. Szpak P, Millaire J-F, Chapdelaine C, White CD, Longstaffe FJ. An Integrated isotopic study of Early

Intermediate Period camelid husbandry in the Santa Valley, Perú. Environ Archaeol. 2019:1–17.
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Chungará. 1981; 7:144–71.

46. Santoro CM, Williams VI, Valenzuela D, Romero A, Standen VG. An archaeological perspective on

the Inka provincial administration of the south-central Andes. In: Malpass MA, Alconini S, editors. Dis-

tant Provinces in the Inka Empire: Toward a Deeper Understanding of Inka Imperialism. Iowa City:

University of Iowa Press; 2010. p. 44–74.

47. Santoro CM. Excavaciones en Rosario, valle de Lluta, temporada 1995 (junio, julio, agosto), proyecto

FONDECYT 1950961. 1995.

48. Valenzuela D. Dimensiones sociales de la tecnologı́a de producción del arte rupestre del valle de

Lluta, norte de Chile. Santiago: Qillqa Ediciones/Universidad Católica del Norte/Ocho Libros Edi-

tores; 2017.

49. Stuiver M, Reimer PJ, Reimer RW. Calib 7.0. 14CHRONO Centre. Belfast: Queen’s University Bel-

fast; 2013.

50. Hogg AG, Hua Q, Blackwell PG, Niu M, Buck CE, Guilderson TP, et al. SHCal13 Southern Hemi-

sphere Calibration, 0–50,000 Years cal BP. Radiocarbon. 2013; 55(4):1889–903. Epub 2016/02/09.

https://doi.org/10.2458/azu_js_rc.55.16783
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143. Dedenbach-Salazar Sáenz S. Inka Pachaq Llamanpa Willaynin. Uso y crianza de los camélidos en la

época incaica. Estudio lingüı́stico y etnohistórico basado en las fuentes lexicográficas y textuales del

primer siglo después de la conquista. Bonn: Bonner Amerikanistische Studien–Estudios Americanis-

tas de Bonn; 1990.

144. Murra JV. El mundo andino: población, medio ambiente y economı́a. 1. ed. Lima: Instituto de Estu-

dios Peruanos / Pontificia Universidad Católica del Perú; 2002. 511 p.
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